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ABSTRACT

Mines at regional distances are expected to be continuing sources of small, ambiguous events which must be c
identified as part of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) monitoring process. Many of these 
are small enough that they are only seen by one or two stations, so locating them by traditional methods may
impossible or at best leads to poorly resolved parameters. To further complicate matters, these events have pa
characteristics (explosive sources, shallow depths) which make them difficult to identify as definite non-nucle
events using traditional discrimination methods. Fortunately, explosions from the same mines tend to have si
waveforms, making it possible to identify an unknown event by comparison with characteristic archived event
have been associated with specific mines.

In this study we examine the use of hierarchical cluster methods to identify groups of similar events. These m
produce dendrograms, which are tree-like structures showing the relationships between entities. Hierarchical m
are well-suited to use for event clustering because they are well documented, easy to implement, computatio
cheap enough to run multiple times for a given data set, and because these methods produce results which c
readily interpreted. To aid in determining the proper threshold value for defining event families for a given den
gram, we use cophenetic correlation (which compares a model of the similarity behavior to actual behavior), 
ance, and a new metric developed for this study.

Clustering methods are compared using archived regional and local distance mining blasts recorded at two site
western U.S. with different tectonic and instrumentation characteristics: the three-component broadband DSV
tion in Pinedale, Wyoming and the short period New Mexico Tech (NMT) network in central New Mexico. Gro
truth for the events comes from the mining industry and local network locations, respectively. The clustering t
niques prove to be much more effective for the New Mexico data than the Wyoming data, apparently because th
Mexico mines are closer and consequently the signal to noise ratios (SNR’s) for those events are higher. To ver
hypothesis we experiment with adding gaussian noise to the New Mexico data to simulate data from more di
sites. Our results suggest that clustering techniques can be very useful for identifying small anomalous event
least one good recording is available, and that the only reliable way to improve clustering results is to proces
waveforms to improve SNR. For events with good SNR that do have strong grouping, cluster analysis will reve
inherent groupings regardless of the choice of clustering method.

Key Words: cluster analysis, discrimination, mining events
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OBJECTIVE
One way to determine if an event is from a particular mine is for an analyst to compare known waveforms fro
mine to the unknown waveform. This can be done by eye, and for an analyst who knows a region well, event
certain mines can be easily identified by visual inspection. However, with the large volume of data that can be
expected when monitoring the Comprehensive Nuclear-Test-Ban Treaty (CTBT), we want to find a way to au
comparing unknown waveforms to archived events associated with specific mines. In this study, we investiga
use of cluster analysis techniques to facilitate this comparison. Previous seismic event studies have used clu
ysis to classify event catalogues (Isrealsson, 1990; Riviere-Barbier and Grant, 1993), but have only provided
sory view of the richness of the discipline.

Using data from three mines in Wyoming and four mines in New Mexico, we compare different waveform proce
methods and cluster analysis techniques to determine what processing parameters and cluster analysis tech
the best job of clustering known events. To help determine which methods give the best results, we use two m
The first is cophenetic correlation and the second is a metric based on separation of known events from diffe
mines and the formation of clusters of events from the same mine.

RESEARCH ACCOMPLISHED

Cluster Analysis

The term cluster analysis refers to a variety of techniques for grouping similar entities in such a way that thei
relationships are revealed.   Most of the work in the area comes from taxonomy, a discipline of biology, where
researchers seek to classify organisms based on sets of measurements (e.g. various measurements of types
The first step in any method of cluster analysis is to quantify the similarity, or conversely, the dissimilarity betw
the entities to be categorized. Because the mathematical equations involved are typically given using dissimila
follow that convention. A measure of dissimilarity could easily be developed for seismic waveforms (e.g. param
could be arrival times, signal to noise ratio (SNR), etc.), but this would involve a subjective choice of the para
which we would prefer to avoid. Instead we choose to base our measure of dissimilarity on waveform correlati
forming the complement of the correlation coefficient. This quantity conveniently ranges from 0 to 1, but this i
necessary for cluster analysis; any measure of dissimilarity will do.

Cluster Analysis Techniques

There are many different types of cluster analysis techniques, but most fall into one of four general types (Da
1986): partitioning methods (e.g. factor analysis), arbitrary origin methods (e.g. K-means method), mutual sim
methods, and hierarchical clustering methods. The choice of the type to use depends on various characteristic
ing the user’s mathematical competency, the computational resources available, and of course the manner in
the results are to be used. For this study we choose to use hierarchical cluster methods, because these meth
well-documented, easy to implement, computationally cheap enough to run multiple times for a given data se
because these methods produce results which can be readily interpreted for our data sets (seismic events). H
cal clustering methods formdendrograms, which are tree-like structures showing the relationships between the e
ties. Dendrograms can be built either by division, i.e. from the top down, or agglomeration, i.e. from the roots
Agglomerative methods are much more common and are generally computationally less expensive. In this st
use agglomerative methods.

There are many methods to agglomeratively build the dendrogram, but all of them follow the same basic proc
Note that in the following the term “pair” refers to any two entities that are being joined; each of these entities c
either an original data entity or a cluster formed from data entities and/or other clusters. The generalized proce
follows:

1. find the minimum dissimilarity pair (i.e most similar) in the dissimilarity matrix
2. remove the rows and columns corresponding to each member of the pair from the matrix
xx
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3. by some means add a new row and column corresponding to the dissimilarities between the newly forme
and all remaining entities (either original entities or clusters).

4. repeat steps #1-3 until the matrix has been reduced to 2x2 whereupon the last pairing is the only pair lef
further updates are necessary.

The trick, of course, is in step #3 where one must generate dissimilarities for the new pair with all other entitie
There are several methods for doing this. In our study we tested six methods. Nearest neighbor orsingle linkageis a
method based on the minimum dissimilarity, i. e. the best pair of all possible pairs. On the other end of the sp
is the furthest neighbor orcomplete linkage method where linkage is based on the maximum dissimilarity, i.e. th
worst pair. With thegroup average method, linkage is based on the average of the dissimilarities. For thecentroid
method, linkage is based on the squared Euclidean distance between the centroids of each entity. Linkage is b
the “between-group sum of squares” for two entities with theminimum variance method. At each stage in this
method, variance within clusters is minimized with respect to variance between clusters. The last method is tflexi-
ble method. The dissimilarities are weighted with three constants that add to 1. The values we use are 0.625
and -0.25.

Dendrogram Interpretation

Once the dendrogram has been formed, it can be interpreted. However, there can be many ways to group th
into different clusters and the decision is always subjective. In some cases, the groups may be obvious, but th
tainly not always the case. For complex dendrograms, the question of where to “cut the stems” of the tree-lik
ture is not easily answered and so we have investigated methods to aid in the decision.

Cophenetic Correlation

One method which has been proposed to help with this problem is the use of cophenetic correlation. Cophen
relation is the correlation between the actual dissimilarities as recorded in the original dissimilarity matrix, and
dissimilarities which can be read off of the dendrogram. In essence, this is a measure of how well the dendro
which is a model of the similarity behavior, models the actual behavior. Notice that the cophenetic correlation c
calculated at each step of the building of the dendrogram, “scoring” only the dissimilarities between entities w
have been built into the tree to that point. Thus, one can make a simple plot of cophenetic correlation vs. pair n
Sudden decreases in the cophenetic correlation indicate that the cluster just formed has made the dendrogra
faithful to the data and thus may suggest that the decision line should lie between this cluster and the previou
(Ludwig and Reynolds, 1988). Similarly, one can look for sudden increases in variance at each cycle for a sugg
that a “bad” group has been formed. For our implementation, the variance increase at each cycle is compute
variance of the newly formed group less the variances for each of the two groups which were combined to fo
group. Both of these methods are easy to implement and we have built them into our standard dendrogram pac
aid in interpretation. In general, we find the cophenetic correlation to be much more robust.

SNL Metric

In the case where the grouping is already known and the method and any waveform processing parameters 
chosen to achieve the best separation, we found that it is desirable to develop a metric to score the success o
duced dendrogram at separating the groups. We found no such metrics in the literature and so developed on
own. Our metric rewards two properties. First, separation, which we define to be the tendency to place entitie
different groups into their own clusters. Thus dendrograms which put all of the objects of a certain type in clu
which have few if any objects of other types will score well. Second, in order to promote the formation of cluster
reward fusion, that is the tendency to have fewer clusters for each group. This constraint must be added beca
erwise the unclustered original data entities will score perfectly for separation and this will always be the pref
solution.
xx
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We compare waveform processing methods and group similarity calculation methods using archived regiona
local distance mining blasts recorded at two sites in the western U.S. with different tectonic and instrumentatio
acteristics. Both sites are located within regional distances of regular mining activity, so data is readily availab

In Wyoming, data was collected with the Deployable Seismic Verification System (DSVS) installed at the Pine
Seismic Research Facility (PSRF) near Boulder, Wyoming. DSVS records three component high frequency da
50 Hz) on a Teledyne Geotech S3 seismometer and a 24-bit digitizer. The sample rate is 200 samples per seco
data can be considered accurate up to 40 Hz and the average background noise is close to the USGS-Peter
noise model (Carr, 1993). Three mining operations in Wyoming provided origin times and total tonnage of rip
fired events detonated at their sites in 1991 and 1992. Archived DSVS data was searched for events and 175
signals were found. Both timing problems and poor signal-to-noise made it difficult to find signals at DSVS. Th
gin times supplied often did not produce a signal at the predicted P-time at DSVS, so many events were assu
be from a particular mine if they started close to the predicted P-time. Most events were small, because the rip
technique is used to reduce ground motion and minimize damage.

Mining data in New Mexico was collected with the New Mexico Tech (NMT) network, a collection of 19 station
throughout New Mexico. All the seismometers are 1 Hz, critically damped geophones with an upper corner o
15 Hz. The sampling rate is 100 Hz. For this study we are using station CAR, a single vertical component instru
Data was collected over a 4 month period in 1997 when mining activity was high in western New Mexico and ea
Arizona. The events were located using the NMT network. Even though the mines are located outside the ne
we feel the locations are good enough to associate specific events to each mine. And the fact that the NMT d
comes from a network provides us with a means to compare our clusters, which are derived using only a single
of the network, with the locations determined from the entire network using traditional methods.

Table 1 lists characteristics of the data from the mines in Wyoming and New Mexico. Mines W1 and W2 are a
lar distances from DSVS and both have poor SNR. Mines NM1 and NM3 are at similar distances from station
in New Mexico. Examples of signals from all of the mines are in Figure 1.

Waveform Processing

Before cluster analysis is done we process the waveforms. Six parameters, (1) time window, (2) sample rate, (3
type, (4) tapering, (5) Hilbert enveloping and (6) filtering are varied to see the effects on the resulting dendrog

Table 1: Characteristics of Wyoming and New Mexico mines

mine distance azimuth Lg-P (range) Lg -P (ave) SNR

W1 359 km 75 degrees 38-50 sec 43.6 sec poor

W2 322 km 90 degrees 36-47 sec 43.0 sec poor

W3 144 km 217 degrees 17-22 sec 20.6 sec good

NM1 179 km 224 degrees 17-24 sec 22.6 sec good

NM2 211 km 226 degrees 25-27 sec 26.3 sec good

NM3 144 km 336 degrees 20-25 sec 22.9 sec good

NM4 257 km 249 degrees 28-37 sec 31.3 sec good
xx
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Rivier-Barbier and Grant (1993) found that the Lg - P time is the characteristic of the waveform that best clus
their data, and we also found this to be true. A time window starting right before the picked P arrival and long en
to see the secondary arrival worked better than shorter windows or windows centered on the secondary arriv
sample rate did not have much affect on the dendrograms, and so we choose to downsample the data in ord
imize the computer memory needed to calculate the dissimilarities.

Tapering the traces was done to remove any edge effects that could result from ending in the middle of a cyc
taper cannot be too large however, or important features of the waveform will no longer contribute to the corre
A slight taper of 5% works well. Using a Hilbert envelope removes negative values in the waveform and acts as
pass filter. Without the envelope, the sorting focusses on small details in the waveforms that cause events fro
same mine to be split into different clusters. The enveloping also causes the resemblance values to increase a
rates the clusters better, so we always use a Hilbert envelope when doing cluster analysis. Filtering affects the
only if the waveforms from different mines have different frequency content. In most cases, filtering the data do
have much effect on the dendrogram.

We started by using the flexible method to do cluster analysis. Once we determined the best processing para
using this method, we used the same parameters and tested the other five cluster analysis techniques. All m
cluster the events, although there are slight differences in the pairing of events. We found that if the waveform
cessing parameters are picked correctly and are robust, it really doesn’t matter which cluster analysis method
Since we like the look of the dendrogram created using the flexible method the best, that is the method of ch

Cluster Analysis Results

Dendrograms of the Wyoming and New Mexico data are in Figures 2 and 3. For both data sets, dendrograms
culated using a time window starting just before the picked P arrival and long enough to see any secondary arr

Figure 1. Sample waveforms from the Wyoming mines (top) and New Mexico mines (bottom)
xx
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5% taper, a Hilbert envelope and the flexible method. In Wyoming the events separate into three clusters, on
events and two with W1 and W2 events mixed together. The decision line along the left side of the clusters is
we picked the solution, using the metrics which are illustrated beneath the dendrogram. Mines W1 and W2 a
approximately the same distance from DSVS, and it appears that the Lg -P time alone cannot effectively sepa
two mines into distinct clusters. We experimented with just the W1 and W2 events to see if it is possible to se
them into two clusters. Filtering the data helps, but we cannot find a characteristic feature in the W1 and W2 
forms that clusters the two mines into two distinct groups effectively and robustly.

However, in New Mexico the events separate into four clusters, each corresponding to a specific mine. There a
events that are misclustered, but they have abnormally low P amplitudes compared to the other signals from th
mines, so we believe that is why they are misclustered. The two mines in New Mexico at similar distances fro
station CAR, mines NM1 and NM3, clearly separate into two groups, unlike the Wyoming data. Mines W1 an
are both over 300 km away from the recording station, and the SNR is not very good. Mines NM1 and NM3 a
than 180 km away from the recording station and have good SNR. We hypothesize that since the SNR is better
mines in New Mexico, there is correlation on other features of the waveforms besides the Lg - P time that is s
ing the events into two clusters. In Wyoming the SNR is not good enough to correlate on any other features i
waveforms.

In order to investigate the effects of changing SNR on the groupings provided by cluster analysis, we use the
Mexico data, which has excellent SNR in its raw form. We simulate noisy data by adding noise to the data to de
the SNR. One common means to add noise to an event recording is to capture a sample of noise ahead of th
arrival, scale it as desired, and then add it to the event waveform. Unfortunately, for our data set this cannot alw
done because the data is segmented and so each waveform does not always include a sufficient pre-event n
ple. Instead, we choose a single pre-event noise sample spanning 27 seconds from one of the event recordin
domize the phase information to prevent correlation, and dilate/contract it as needed to generate the noise sa
which were added to each of the waveforms. To do this, for each signal waveform to which we added noise, 
the fft of our master noise sample, resampled the amplitude spectra at the appropriate frequency spacing for th
waveform’s time length (recall that the length of the time interval spanned by a waveform determines the freq
discretization for the fft in the spectral domain), generated new random phase information at the new frequen
cretization using a white distribution, transferred the new spectral series back to the time domain using the inve
to generate the new noise waveform, scaled the new noise waveform for the specified SNR, and then added
signal waveform. For the scaling, we use SNR to specify the relationship between the maximum value of the
waveform and the maximum value of the generated noise waveform which will be added to the signal wavefo
Thus, an SNR of 2 implies that the generated noise waveform is scaled to half of the signal waveform before
added to the signal waveform.

We add noise to the New Mexico data in gradual steps, starting with a value of SNR = 10 and decreasing to a v
SNR = 0.5. What this means is that when SNR = 10, we added noise to the traces which has a maximum value
of the maximum signal. Using a value of SNR = 0.5 means adding noise which has a value of 2 times the ma
signal. The dendrograms produced when SNR = 10 and SNR = 5 show no noticeable differences from the de
gram with no noise (Figure 3). There are four clusters, each corresponding to one mine with the same misclu
events as with the raw data. Changes in the dendrogram start occurring when we get to noise levels with SN
SNR = 2 and SNR = 1. In Figure 4 we see the dendrogram resulting when SNR = 2. Sample traces without no
with the added noise are in Figure 5. There are four clusters in the dendrogram. Mines NM2 and NM4 still ma
tinct clusters, but the other two clusters consist of events from both mines NM1 and NM3. These two mines a
similar distances from the station CAR (Table 1). We have added enough noise to the signals, that the chara
in the waveforms that separated the two mines when the SNR was good can no longer be recognized by the
analysis. When we decrease the value of SNR to 0.5, we add so much noise that not even the Lg - P times can
the events, and we end up with the events from the four mines all mixed together.
xx
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CONCLUSIONS ANDRECOMMEND ATIONS
As we have shown, it is easy to calculate dendrograms for a given data set, and if appropriate waveform proce
done, events from specific mines will cluster. The waveform processing is important, and some specific param
affect the resulting dendrogram more than others. One characteristic of the waveform that is important for cre
distinct clusters is the Lg - P time, so the time window used to calculate the dendrogram must include both the
secondary arrivals. Using a Hilbert envelope can also improve the clustering, because it smooths out some o
details in the waveforms that can cause events from the same mine to be broken into more than one cluster.

In Wyoming, no matter how much pre-processing of the waveforms we do, we are not able to clearly separate
from mines W1 and W2. We concluded at first that if the Lg - P times for two mines are virtually identical, then
tering analysis would not work. However, calculating a dendrogram with the New Mexico data proved that eve
from mines at similar distances can cluster in distinct groups. The difference between the Wyoming and New M
data is the SNR of the events. The New Mexico data had very good SNR, but the Wyoming data, for a variety
sons, had poor SNR. By adding noise to the New Mexico data, we are able to show that clustering deteriorate
noise level increases. When we add noise that has a maximum value of 1/2 of the maximum signal, the even
mines NM1 and NM3 which had clearly clustered with the raw data, are starting to mix together. The dendrog
from New Mexico calculated with the added noise (Figure 4) looks similar to the dendrogram calculated using
Wyoming data (Figure 2).

If the waveforms have poor SNR, then the other features that can be used to cluster events such as the shape
ferent arrivals or the frequency content, cannot be discerned. In fact, the production of a dendrogram is very 
“garbage in, garbage out” process; none of the cluster analysis methods can extract information where there
available. Typically, if an analyst cannot discern similarities between the entities, then a dendrogram will not h
However, if the preparatory work is properly done, and the data do have strong grouping, the choice of cluste
sis method will make little difference. We believe cluster analysis can be useful in comparing unknown wavef
with archived data from known mines. It should be fairly simple to implement an automated process to do the
parison.
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